

Enhance System Performance and Productivity by Leveraging DSP and Embedded Technologies in FPGA Designs

- Embedded and digital signal processing (DSP) design challenges and solutions
- DSP coprocessing
- Nios[®] II C-to-Hardware (C2H) Acceleration Compiler
- Quartus[®] II software highlighted features
- Conclusion

Product Evolution

Constant Demand for New Features; Higher Performance and Lower Costs



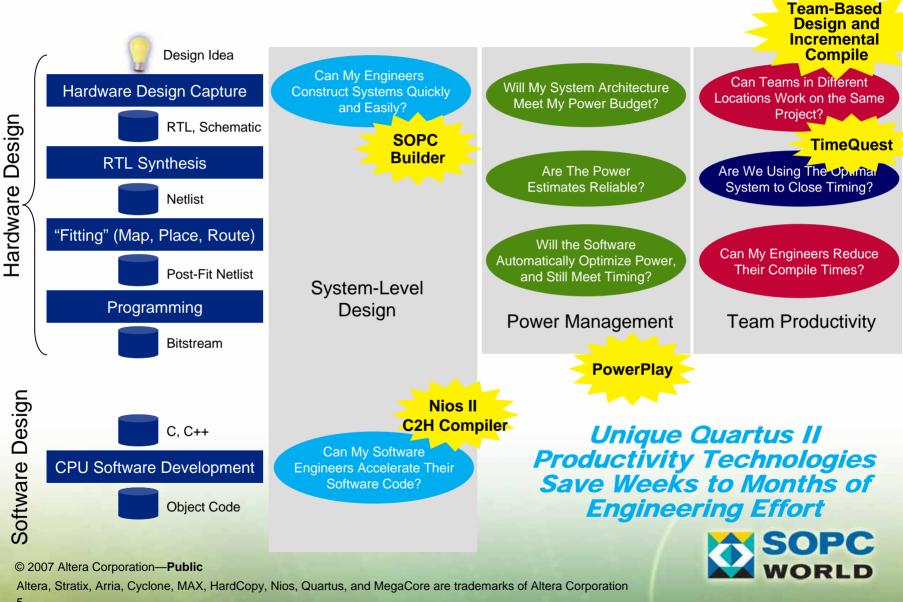
© 2007 Altera Corporation—Public

Altera, Stratix, Arria, Cyclone, MAX, HardCopy, Nios, Quartus, and MegaCore are trademarks of Altera Corporation

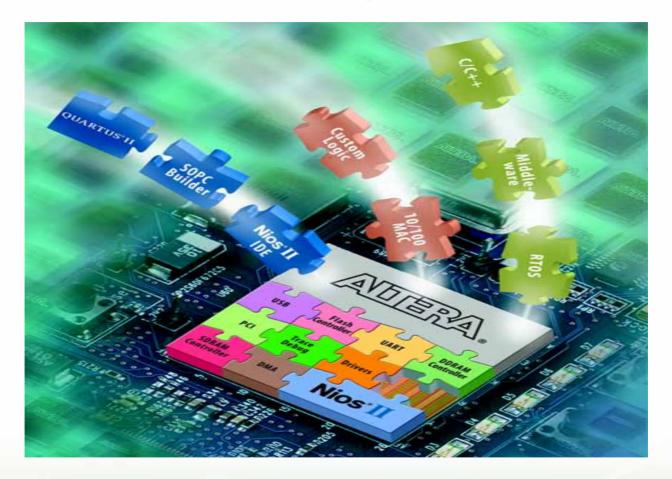
Embedded and DSP Design Challenges

Productivity

Performance

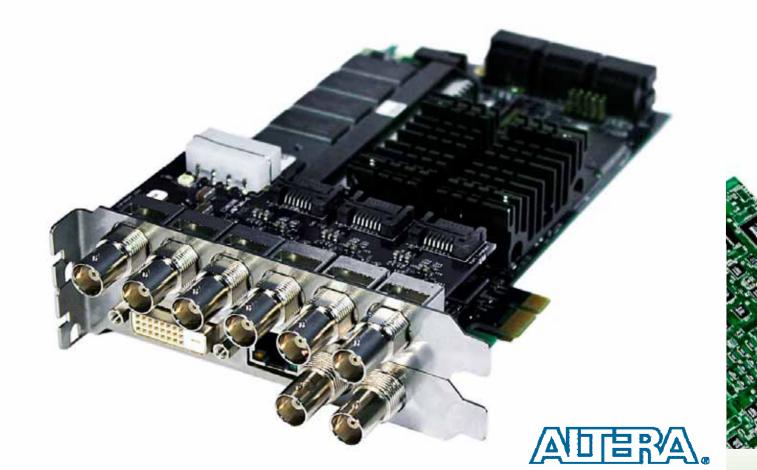

Flexibility

FPGAs Tackle These Challenges Head On


© 2007 Altera Corporation—**Public** Altera, Stratix, Arria, Cyclone, MAX, HardCopy, Nios, Quartus, and MegaCore are trademarks of Altera Corporation

Solution on Productivity–Tool

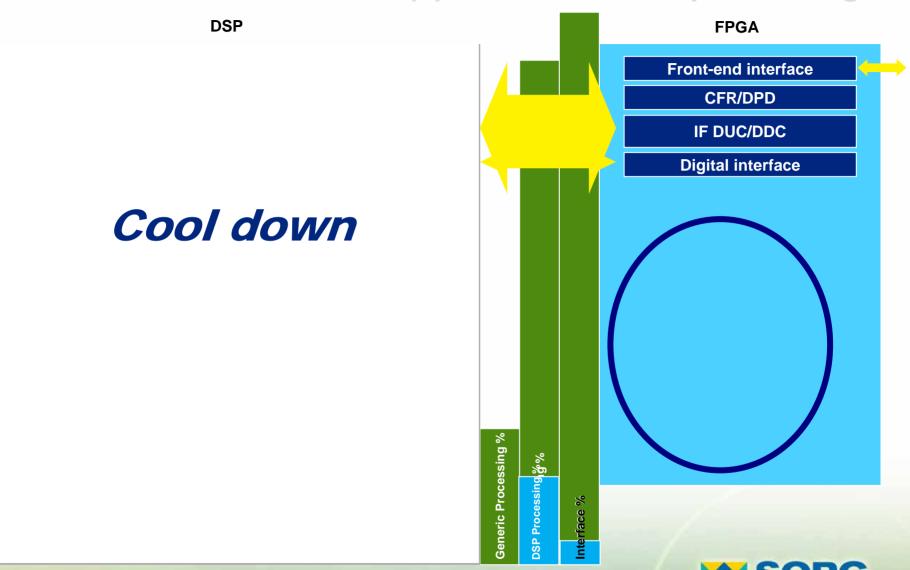
Solution on Flexibility–FPGAs



FPGA is the Poster Child for Flexibility; Rapidly Prototype System and Feature Fill Over Time

© 2007 Altera Corporation—**Public** Altera, Stratix, Arria, Cyclone, MAX, HardCopy, Nios, Quartus, and MegaCore are trademarks of Altera Corporation

Solution on Performance (1): FPGA Single Chip

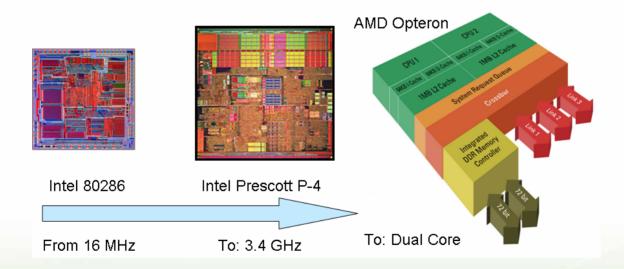


© 2007 Altera Corporation—Public

Altera, Stratix, Arria, Cyclone, MAX, HardCopy, Nios, Quartus, and MegaCore are trademarks of Altera Corporation

Solution on Performance (2): DSP+FPGA Coprocessing

© 2007 Altera Corporation—Public


Altera, Stratix, Arria, Cyclone, MAX, HardCopy, Nios, Quartus, and MegaCore are trademarks of Altera Corporation

DSP Coprocessing

CPU Challenges

- Processor speedup isn't there
- Performance limited by power
- Memory bandwidth limitations
- Single-core performance reaching a limit

Multi-core announcements by Intel, AMD, ARM, and others

© 2007 Altera Corporation—Public

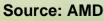
Processor Model Challenges For HPC

- Memory bandwidth limited by package and pin count
- Multiple caches required to keep the microprocessor busy
- Multi-processor cache coherency problem eats up performance gains
- Most of the power consumption is in the cache and related controllers
- But many HPC applications derive little or no benefit from cache

Source: Prof. John Wawrzynek, BWRC, UC Berkeley

© 2007 Altera Corporation—Public

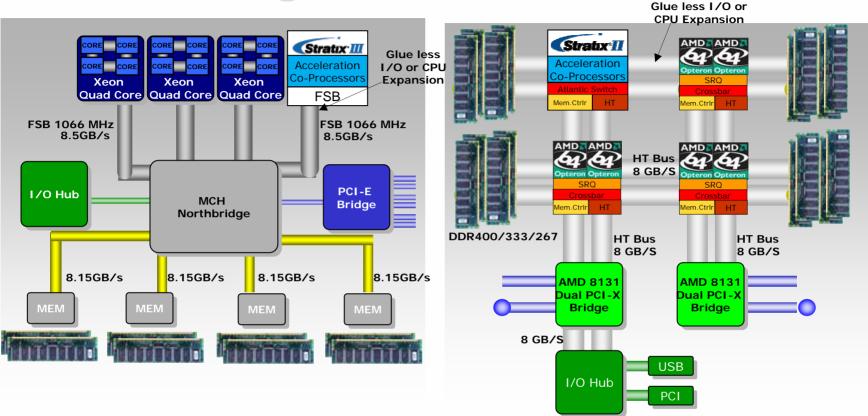
11


Overall Customer Requirements

- Performance: 10X 100X algorithm and 3X 50X application acceleration
- **Productivity**: Simplicity of the tool chain; reduce the effort
- Power: Better performance-to-power ratio
- Price: Compared to alternatives

Performance—FPGA Algorithm Acceleration

- 10X-100X at algorithm level
- Typically 3X-50X at application level
- Varies by vertical
 - 10X for medical imaging
 - 20-50X for financial


Application	Processor only	FPGA Crocessing	Speed Up
Hough and inverse Hough processing	12 minutes processing time Pentium 4-3 GHz	2 seconds of processing time @ 20 MHz	370x faster
AES 1MB data processing/crypto rate Encryption Decryption	5,558 ms/1.51 Mbps 5,562 ms/1.51 Mbps	424 ms/19.7 Mbps 424 ms/19.7 Mbps	13x faster
Smith-Waterman search34 from FASTA	6461 sec processing time (Opteron)	100 sec FPGA processing	64x faster
Multi-dimensional hypercube search	119.5 sec (Opteron 2.2 GHz)	1.06 sec FPGA @ 140 MHz	113x faster
Callable Monte-Carlo analysis (64,000 paths)	100 sec processing time (Opteron 2.4 GHz)	10 sec of processing @ 200 MHz FPGA	10x faster
BJM financial analysis (5M paths)	6300 sec processing time (Pentium 4-1.5 GHz)	242 sec of processing @ 61 MHz FPGA	26x faster
Mersenne Twister random number generation	10M 32-bit integers/sec (Opteron-2.2 GHz)	319M 32-bit integers/sec	3x faster

© 2007 Altera Corporation—Public

Co-Processing Architectures

Intel Xeon[®] Architecture

- Uses Front Side Bus (FSB) Interconnect
- Latest North Bridge has FSB interface for each CPU
- Xeon Quad Core presentation available: <u>http://www.intel.com/pressroom/kits/quadcore/qc_pre</u> ssbriefing.pdf

AMD Opteron[™] Architecture


- Uses HyperTransport Interconnect
- Industry-standard AMD64 technology
- Socket modules available for Opteron
- AMD Torrenza web site: <u>http://enterprise.amd.com/us-</u> en/AMD-Business/Technology-Home/Torrenza.aspx

© 2007 Altera Corporation—Public

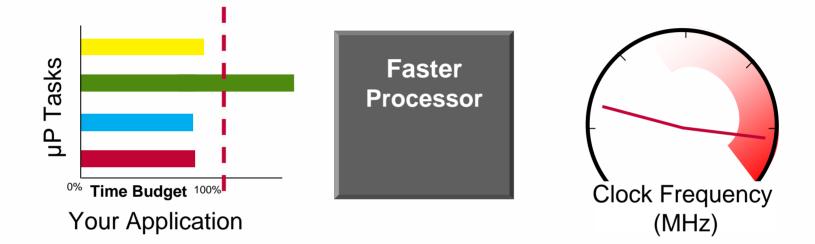
Altera, Stratix, Arria, Cyclone, MAX, HardCopy, Nios, Quartus, and MegaCore are trademarks of Altera Corporation

Commercially Available Platform

- HyperTransport links, memory interface, power supply, heat-sink
- Usable with any AMD Opteron (or future Intel CSI-enabled CPUs) server
- Usable in rack-mount or high-density, "blade" server systems, where
 - Plug-in boards are not feasible

© 2007 Altera Corporation—Public

Altera, Stratix, Arria, Cyclone, MAX, HardCopy, Nios, Quartus, and MegaCore are trademarks of Altera Corporation



C2H (C to Hardware) Tool

© 2007 Altera Corporation—Public

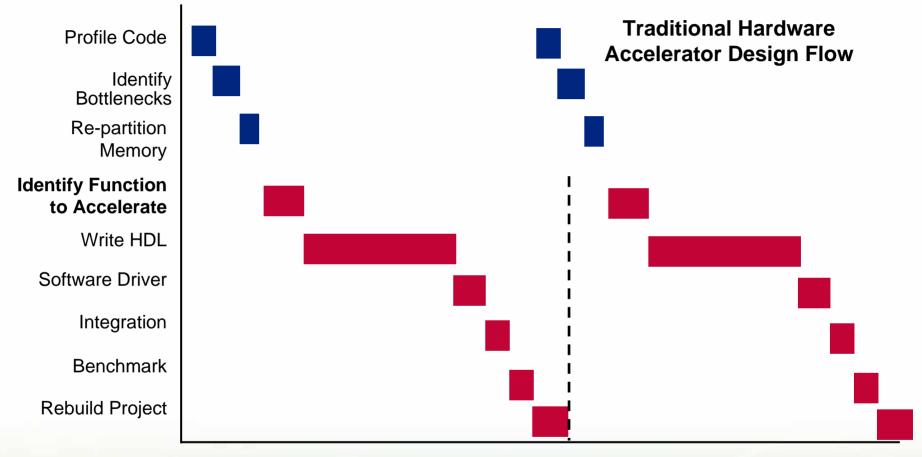
Boosting Software Performance

If you choose a faster processor • More expensive \$\$\$\$ • Consumes more power

Requires board redesign

© 2007 Altera Corporation—Public

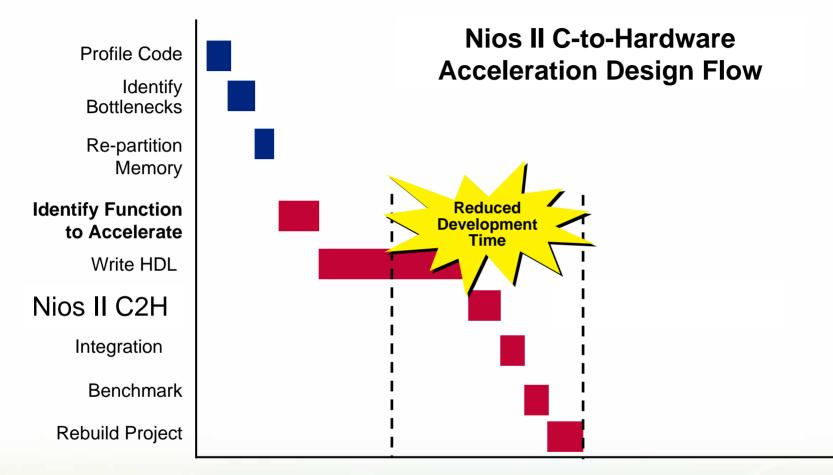
Boosting Software Performance



Multiply software performance. Accelerate only what's necessary. Don't pay for performance you don't need.

© 2007 Altera Corporation—Public

Hardware Acceleration Flow



Time

© 2007 Altera Corporation—Public

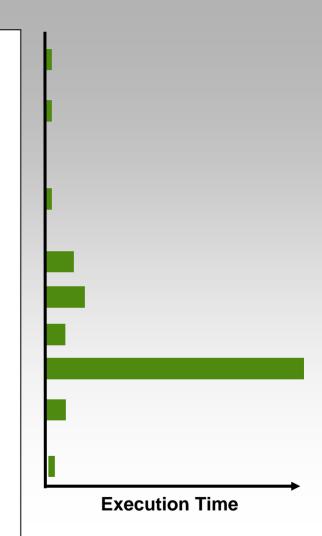
Hardware Acceleration Flow

Time

© 2007 Altera Corporation—Public

Nios II C-to-Hardware Acceleration Compiler

- Productivity tool that automates creation and integration of hardware accelerators
- Streamlines C acceleration—you don't have to know how to design hardware
- Integrated in familiar Eclipse-based Altera[®] Nios II Integrated Development Environment (IDE)


	ferences		
alt_u32*X+Y Add W write_ptr = Accele	ne At Line	Add Watch Expression -Accelerate this Function Save	Right Click to
- — Add w		N	Accelerate

© 2007 Altera Corporation—Public

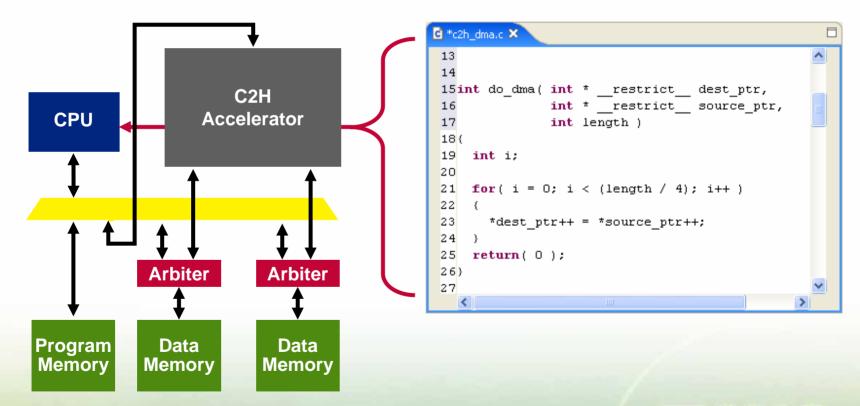
Step 1: Identify Software Bottlenecks

```
main ()
  ...variable declarations ...
  init();
  while (!error && got data())
    do user interface();
    gather statistics();
    if (got_new_data())
      d transform(in buf, out buf);
    check_for_errors();
  cleanup();
```


© 2007 Altera Corporation—Public

Step 2: Right Click to Accelerate

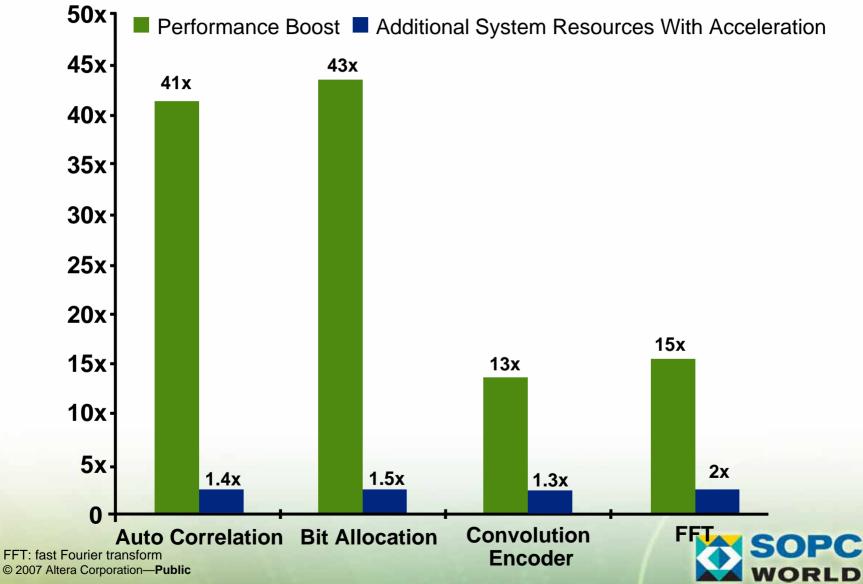
	Undo	Ctrl+Z	
main ()	Re <u>v</u> ert File		
{variable declar	Cu <u>t</u> Copy	Ctrl+X Ctrl+C	
init();	<u>P</u> aste	Ctrl+V	
while (!error &&	Sh <u>i</u> ft Right S <u>h</u> ift Left <u>C</u> omment Uncommen <u>t</u>	Ctrl+/ Ctrl+\	
	Co <u>n</u> tent Assist	Ctrl+Space Ctrl+Shift+N	
do_user_interf	Format	Ctrl+Shift+F	
gather_statist	Show in C/C++ Projects		
if (got_new_da	Refactor	•	
d_transform check_for_erro	<u>O</u> pen Declaration Open Type Hie <u>r</u> archy All Dec <u>l</u> arations All Re <u>f</u> erences	F3 F4 •	
<pre></pre>	→I Run To Line I► Resume At Line W Add Watch Expression Accelerate with the Nios II	C2H Compiler	Execution Time
	Save		SOPC


WORLD

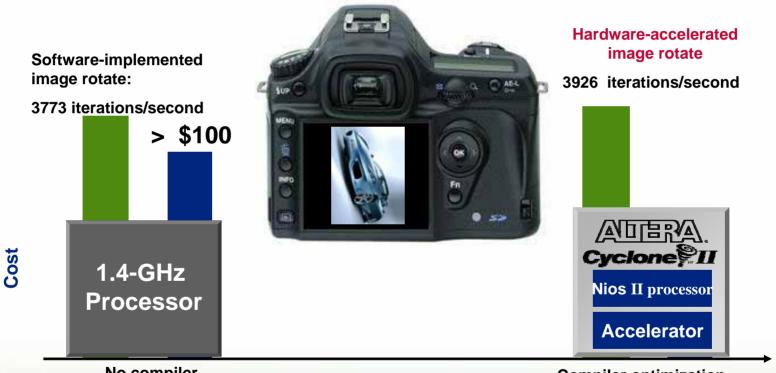
© 2007 Altera Corporation—Public

Altera, Stratix, Arria, Cyclone, MAX, HardCopy, Nios, Quartus, and MegaCore are trademarks of Altera Corporation

What Does Nios II C2H Compiler Do?


 Generates a custom hardware accelerator from an ANSI C function

C2H: Nios C-to-Hardware Acceleration Compiler


© 2007 Altera Corporation—Public

Dramatic Performance Boost

EEMBC Image Rotate

(95 MHz)

No compiler optimization

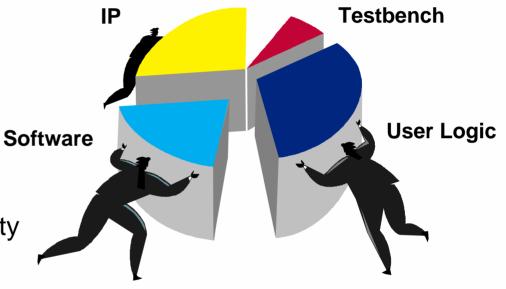
Compiler optimization, 1200 LEs for Nios II/s processor, 1200 LEs for accelerator

As fast as a 1.4-GHz processor for \$1.42 of logic in a Cyclone[®]

© 2007 Altera Corporation—Public

Altera, Stratix, Arria, Cyclone, MAX, HardCopy, Nios, Quartus, and MegaCore are trademarks of Altera Corporation

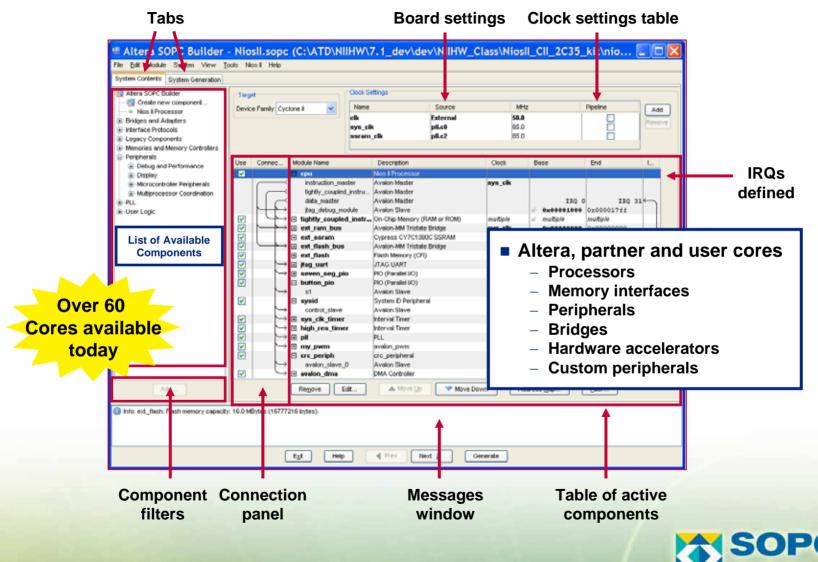
Performance

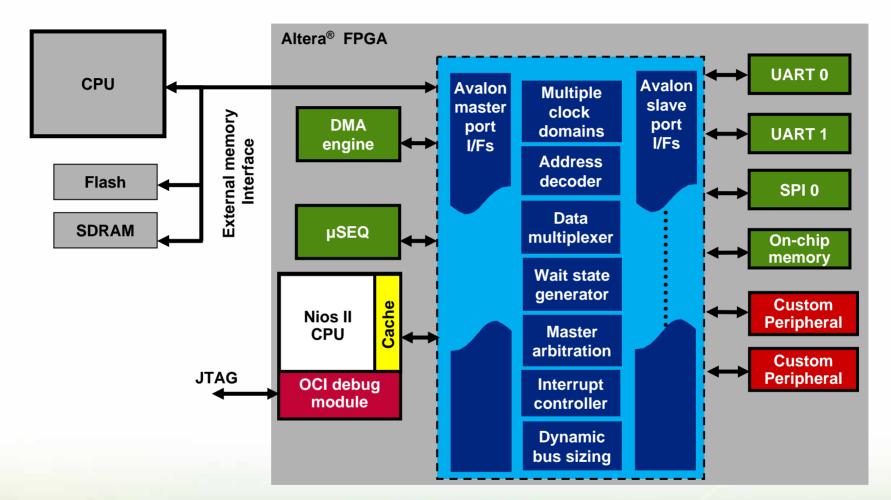


Quartus II Highlighted Features •SOPC Builder •PowerPlay •TimeQuest

SOPC Builder – The Tool

Automates block-based design

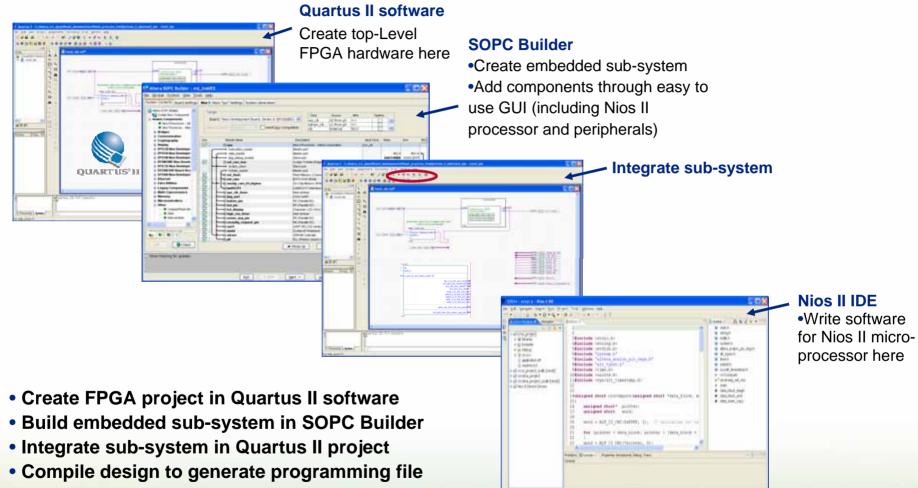

- System definition
- Component integration
- System verification
- Software generation
- Fast and easy
- Supports design reuse
 - 3rd Party intellectual property (IP) Cores
 - Internally developed IP


© 2007 Altera Corporation—Public

SOPC Builder Tool at a Glance

© 2007 Altera Corporation—Public

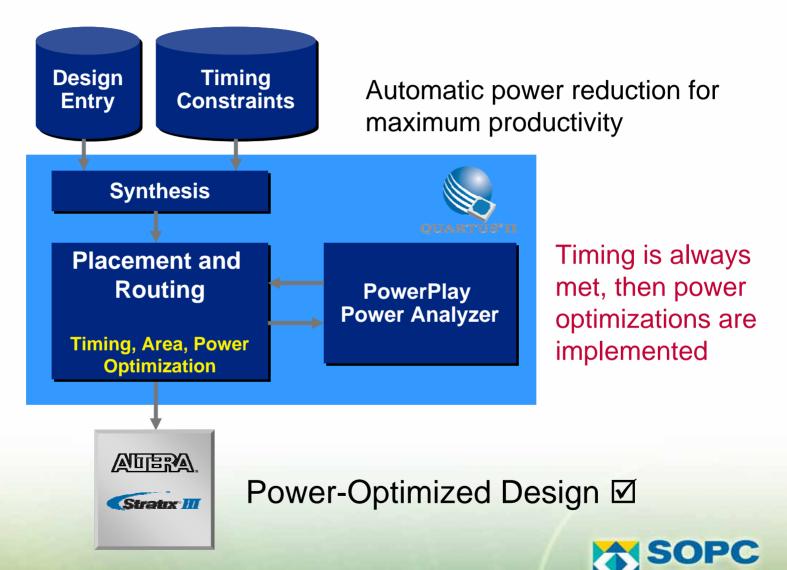
SOPC Builder Generated System



Designer Only Needs to Worry About Peripheral Interface

© 2007 Altera Corporation—Public

Design Tool Flow



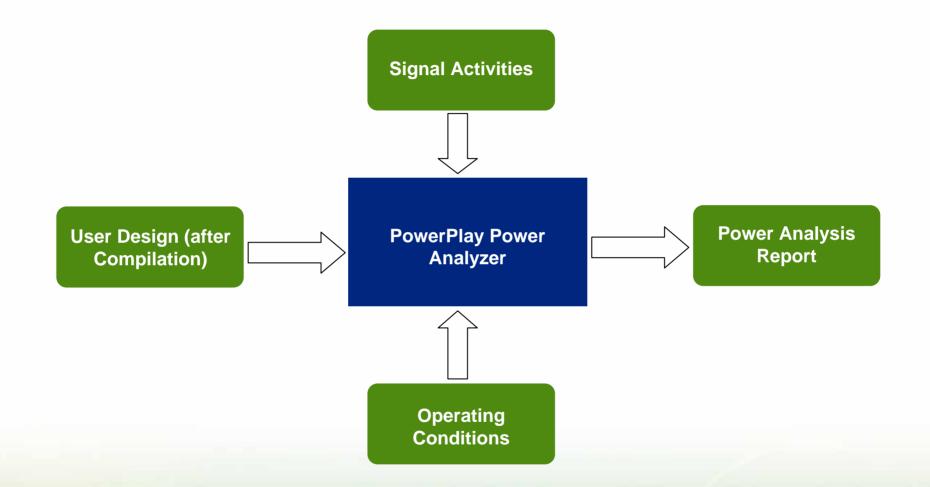
- Program FPGA on the board
- Create software and run on the processor on the FPGA

© 2007 Altera Corporation—Public

Quartus II Software: PowerPlay

© 2007 Altera Corporation—Public

PowerPlay Power Analyzer


- Provides single interface for vectorless and simulation-based power estimation
- Uses improved power models
 - Based on HSPICE and silicon correlation
- Executing power analysis
 - Processing menu \Rightarrow Start \Rightarrow Start PowerPlay Power Analyzer
 - Scripting

Three Parts to Good Power Estimates

- 1. Accurate toggle rate data on each signal
- 2. Accurate power models of device circuitry
- 3. Knowledge of device operating conditions

PowerPlay Power Analyzer

© 2007 Altera Corporation—Public

PowerPlay Power Inputs

- Signal activity file (.SAF)
 - ASCII text file generated by Quartus II software
- VCD
 - Generated by Quartus II software and 3rd-party simulators
- "Power Toggle Rate" and "Power Static Probability" assignments
 - Use Assignment Editor or Tcl file
 - Apply to specific entities/nodes
- Default toggle rate (12.5%)
 - Percentage of clock periods in which signal transitions
 - May also express as an absolute number of transitions per second

© 2007 Altera Corporation—Public

Other Input Data Used

- Operating conditions
- Clock timing assignments
 - Used to calculate internal signal activities
- Vectorless estimation
 - PowerPlay automatically derives signal activity for a node
 - Based on activity rates of signals feeding a node and functionality
 - Requires input signal activity data
- Capacitive loading
- Termination
- I/O standard

© 2007 Altera Corporation—**Public** Altera, Stratix, Arria, Cyclone, MAX, HardCopy, Nios, Quartus, and MegaCore are trademarks of Altera Corporation 37

PowerPlay Power Analyzer Settings

Enter single or multiple SAF/VCD files

- Allows simulation of subdesigns separately
- Enable glitch filtering to increase accuracy
 - Also recommend enabling glitch filtering during simulation
- Enter default toggle rates for inputs
- Enter toggle rate for rest of design
- Enable/disable vectorless estimation

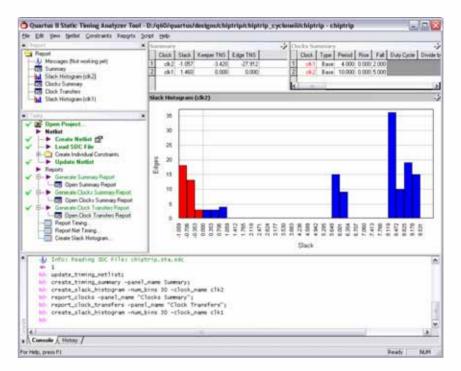
General PowerPlay Power Analyzer Settings						
Pass User Libraries (Current Project) Device Operating Conditions Compilation Process Settings EDA Tool Settings	Select the power analyzer options. Use input file(s) to initialize toggle rates and static probabilities during power analysis Input File(s)					
Analysis & Synthesis Settings	File name	Type	Entity	Add		
 Fitter Setting: Timing Analysis Settings 				Edit		
- Assembler				Bemove		
 Design Assistant SignalTap II Logic Analyzer 						
- Logic Analyzer Interface				D		
 Simulator Settings PowerPlay Power Analyzer Settings 	Perform gitch filtering	on VCD files				
PowerPlay Power Analyzer Settings						
	Write out signal activities up	ed during power anal	/585			
	Output file name:					
	Vite signal activities to report file					
		Vite power dissipation by block to report file				
	Default toggle rates for unspec	_				
	Default toggle rate used for in		5 X	<u>×</u>		
	Default toggle rate used for					
	C Use default value: 12	5 %	<u>×</u>			
	 Use vectoriess estimation 	n				

© 2007 Altera Corporation—Public

Faster TimeQuest Timing Analyzer

Improves productivity with faster timing closure

- Improved compile times
- Reduced memory usage
- Improved timing constraint conversion from Altera's classic timing analyzer to Synopsys design constraint (SDC)



© 2007 Altera Corporation—Public

39

TimeQuest Timing Analyzer

- Timing analysis
 - New, easy-to-use timing analyzer
 - Complete GUI environment for creating timing constraints and reports
 - Native support for SDC (Synopsis Design Constraints)

Only 65-nm FPGA Vendor with Native SDC Support

© 2007 Altera Corporation—Public

Top 5 Reasons to Use TimeQuest

- Easier to use: TimeQuest provides an easier to use GUI and interactive reporting for analyzing timing
- Industry standard: SDC format is an established industry standard
 - Simpler and more concise timing format
- More powerful: SDC allows for faster, easier description and analysis of advanced design constructs
 DDR (other source sync.), complex clocks
- Designs run faster: TimeQuest more precisely analyzes timing behavior—gain 3-5% performance at 65 nm
- Interoperability: allows for easy migration of SDC constraints for ASIC and HardCopy[®] designs

© 2007 Altera Corporation—Public

Quartus II Reference

- Quartus II handbook
 - www.altera.com/literature/lit-qts.jsp
- Quartus II online demos
 - www.altera.com/quartusdemos
- Quartus II downloads
 - <u>www.altera.com/download</u>
- Technical support
 - www.altera.com/mysupport

© 2007 Altera Corporation—**Public** Altera, Stratix, Arria, Cyclone, MAX, HardCopy, Nios, Quartus, and MegaCore are trademarks of Altera Corporation

Conclusion

FPGAs, Tools, and DSP–Coprocessing Enhances Performance Together

© 2007 Altera Corporation—Public

Conclusion

- Embedded and DSP design challenges- productivity, performance, and flexibility
- DSP coprocessing, C2H tools, and new features in Quartus II help tackle those challenges
 - Coprocessing provides unparalleled performance improvement
 - C2H tools provide ability to create performance-enhancing hardware automatically (simply <u>*Right Click to Accelerate*</u>) without leaving the C domain
 - Quartus II SOPC Builder automates block-based design easily and efficiently; Powerplay automates power reduction for maximum productivity; Timequest facilitates timing analysis for 65nm era and beyond

© 2007 Altera Corporation—Public

Thank You!